4.Pochodna_i_ciaglosc.pdf

(78 KB) Pobierz
Zad1 Obliczy¢pochodn¡:
Zad4 Obliczy¢pochodn¡:
a ) f ( x )= x 3 + e 4 b ) f ( x )=log 2 x + 1 x 3 6sin x
c ) f ( x )= x 3 p xd ) f ( x )=4 tgx 3 ctgx
e ) f ( x )= x 4 + x 2 + p x
a ) f ( x )= x sin x b ) f ( x )= x x
c ) f ( x )=(cos x ) sin x d ) f ( x )= x p cos x
e arctan x 4 p x f ) f ( x )= x +1 p ln x
x p x f ) f ( x )= x p x 2arcsin x
e ) f ( x )= 3ln x
Zad2 Obliczy¢pochodn¡iloczynuiilorazu:
Zadanie5 Zbada¢ci¡gło±¢funkcji:
8
<
x +1 x 6 2
sin x + 2 x> 2
a ) f ( x )=ln x · cos xb ) f ( x )= ln x
c ) f ( x )= 3ln x
a ) f ( x )=
:
arcsin x d ) f ( x )= x 2 · e x
e ) f ( x )= x
8
<
arctg x x 6 =0
x 2 4 f ) f ( x )=( x 3 + 1 x 2 )arctan x
g ) f ( x )= arcsin x
b ) f ( x )=
:
e x h ) f ( x )=( x 3 + 1 x 2 ) e x
i ) f ( x )= log 2 x
2 x =0
8
<
p x j ) f ( x )= x 3 · e 2 x
k ) f ( x )= e x + x
x 2 +4 x +2
x 2 4 gdy | x |6 =2
4 gdyx =2
l ) f ( x )= lnx +arccos x
c ) f ( x )=
3 p x
ln ( x )
:
xe x n ) f ( x )= log 2 x · cos x
m ) f ( x )= sin x · tanx
4 gdyx = 2
2 x + p x
8
<
x 2 2 x +1
x 1 x 6 =1
2 x =1
Zad3 Obliczy¢pochodn¡funkcjizło»onej:
d ) f ( x )=
:
8
<
a ) f ( x )= e x 5 +10 b ) f ( x )=arctan(ln x )
x 2 6 x +9
x 2 9 | x |6 =3
c ) f ( x )=ln 3 x d ) f ( x )= tg 2 x
e ) f ( x )=ln(tg x 3 ) f ) f ( x )= e arctan 4 p x
g ) f ( x )= ln 2 x 2
e ) f ( x )=
0 x =3
:
1 x = 3
h ) f ( x )= p x · ln 2 p 2 x +1
q
i ) f ( x )= 3 p
1 (arcsin x ) 2
k ) f ( x )= 3 p arcctg 2 xl ) f ( x )= tg 2 ( x 2 )
m ) f ( x )= e sinx · lnx
sin2 x j ) f ( x )=
Przygotował:AndrzejMusielak
1023270490.012.png 1023270490.013.png 1023270490.014.png 1023270490.015.png 1023270490.001.png 1023270490.002.png 1023270490.003.png 1023270490.004.png 1023270490.005.png 1023270490.006.png 1023270490.007.png 1023270490.008.png 1023270490.009.png 1023270490.010.png 1023270490.011.png
 
Zgłoś jeśli naruszono regulamin