slyt299.pdf

(229 KB) Pobierz
Amplifiers: Op Amps
Texas Instruments Incorporated
A new filter topology for analog
high-pass filters
By Mark Fortunato
Analog Field Applications Manager
Figure 1. Gain block with high-order LPF
The analog circuit designer today has liter-
ally dozens of circuit topologies available to
implement filters, from the venerable
Sallen-Key (SK) filter, in use for well over
fifty years, 1 to more esoteric and hard-to-
pronounce filters such as the Mikhael-
Bhattacharyya (MB) filter or the Padukone-
Mulawka-Ghausi (PMG) filter. 2 Each of
these filters has advantages and disadvan-
tages relative to its cousins. Nearly all of the
filter topologies used today were developed
in the 1950s, ’60s, and ’70s. 2–6 . Can we
come up with a filter topology that has an advantage over
all the many topologies that have been in use for decades?
For some specific needs, the new topology presented here
has some unique advantages.
Almost all the common high-pass filters (HPFs) tend to
have one thing in common—capacitors in series with the
forward signal path. For most applications, having capaci-
tors in the signal path is not a problem. However, there
are applications where such capacitors can be problematic.
For example, in broadband low-noise circuits such as many
audio circuits, there is a need to keep resistance values,
and thus noise, low. These applications also often call for
high-pass functions that roll off at low frequencies, below
10 Hz in some audio applications. These cases can thus
call for very large capacitor values. Large-value capacitors
tend to be very expensive or have voltage coefficients and
other non-idealities that can ruin the fidelity of the signals
being passed through them.
Another limitation of the HPFs commonly used is that
the entire filter circuit is implemented separately and
R 1
OpAmp1
R 2
Output
High-Order, Inverting,
Unity-Gain LPF
Input
+
placed either before or after another circuit functional
block. Sometimes a filter in front and one after a block is
needed. The technique we will discuss here allows an
engineer to design a circuit without consideration of the
high-pass function required. After the circuit is designed,
another circuit can be “wrapped around” the original one
that will cause the overall circuit to have a high-pass func-
tion without affecting the operation of the original circuit
at frequencies above the high-pass rolloff.
Adding a high-pass function to block DC offsets
Figure 1 is a simplified schematic of a circuit with a gain
block driving a high-order low-pass filter (LPF) in a signal-
processing application. In this example there is an offset in
the input signal and an offset caused by the filter, both of
which must be removed. Typically a designer would place
a capacitor in series with the input and the output as
shown in Figure 2. For many applications this approach is
just fine; but for some applications, this simple AC-coupling
scheme can cause problems. Besides the reasons already
Figure 2. Adding simple AC-coupling stages
R 1
OpAmp1
R 2
Output
High-Order, Inverting,
Unity-Gain LPF
Input
+
C 2
C 1
Z
Next
Stage
IN
R 3
18
Analog Applications Journal
High-Performance Analog Products
3Q 2008
917597582.363.png 917597582.374.png 917597582.385.png 917597582.396.png 917597582.001.png 917597582.012.png 917597582.023.png 917597582.034.png 917597582.044.png 917597582.055.png 917597582.066.png 917597582.077.png 917597582.088.png 917597582.099.png 917597582.110.png 917597582.121.png 917597582.131.png 917597582.142.png 917597582.153.png 917597582.164.png 917597582.175.png 917597582.186.png 917597582.197.png 917597582.208.png 917597582.219.png 917597582.230.png 917597582.241.png 917597582.252.png 917597582.262.png 917597582.273.png 917597582.284.png 917597582.295.png 917597582.306.png 917597582.317.png 917597582.328.png 917597582.339.png 917597582.346.png 917597582.347.png 917597582.348.png 917597582.349.png 917597582.350.png
 
Texas Instruments Incorporated
Amplifiers: Op Amps
discussed, the characteristics of these high-
pass stages may adversely affect the signal-
processing function that is the primary
purpose of the overall circuit. Each of these
AC-coupling stages creates a single real
(i.e., simple) pole at the frequency deter-
mined by the applicable RC time constant.
Especially as the number of AC-coupling
stages in the signal chain increases, the
composite high-pass function is unlikely to
be the optimal one for the full circuit and
system. More commonly, a filter with com-
plex pole pairs is necessary to optimize the
HPF response.
Using servo feedback rather than
blocking capacitors
In our example, let’s assume that the input
signal presents the largest of the offsets
and that the filter’s output offset, though
small, is objectionable for the latter stages.
Let’s further assume that the desirable HPF
function is that of a single pole. If we elimi-
nate the input AC-coupling filter, the output
filter will certainly remove all DC offsets for
the subsequent stages; but then that input
offset will cause the signal applied to and
processed by the filter to be significantly
shifted “off center,” which can cause signifi-
cant distortion.
An old technique referred to as “servo
feedback” is often used in cases like this.
This technique provides AC coupling,
removing all offsets at the output of the
circuit without putting any circuitry in
series with the amplifier/filter chain of
Figure 1. Servo feedback is fully covered
in Reference 7.
The feedback path added in Figure 3 is
an inverting integrator. The integrator out-
put is fed to the inverting terminal of the
input amplifier so that the overall loop has
negative feedback. Assuming that the rolloff of the LPF is
at least a decade above the desired high-pass rolloff, we
can treat the LPF as a flat gain block for the purposes of
calculating the high-pass response. A simple analysis
shows that we have added a high-pass function with the
transfer function
Figure 3. Single-pole HPF using servo feedback
C
1
R
10 k
OpAmp3
3
Ω
R
10 k
1
Ω
R
10 k
OpAmp1
2
Ω
High-Order, Inverting,
Unity-Gain LPF
Output
Input
+
10
5
V/V
OUT
IN
0
–5
–10
–15
–20
1
10
100
1k
10 k
Frequency (Hz)
R
R
1
2
G
LPF
f
=
.
(2)
RC
31
Since the LPF in this circuit has a gain of –1, we get the
frequency response shown in Figure 3 with a pole frequency
of 15.92 Hz.
This servo technique solves the problem of putting
capacitors in series with the signal path, eliminates the
need for multiple high-pass stages, and allows a designer
to add a high-pass function to a gain/low-pass block with-
out modifying the block itself. However, this technique is
capable of implementing only simple poles and thus does
S RRC
RG
S RRC
RG
231
1
V
V
RR
R
+
OUT
IN
1
2
LPF
=−
G
,
(1)
LPF
231
1
2
1
+
LPF
where G LPF is the absolute value of the LPF gain. G LPF is a
high-pass function with a 3-dB (pole) frequency of
19
Analog Applications Journal
3Q 2008
High-Performance Analog Products
917597582.351.png 917597582.352.png 917597582.353.png 917597582.354.png 917597582.355.png 917597582.356.png 917597582.357.png 917597582.358.png 917597582.359.png 917597582.360.png 917597582.361.png 917597582.362.png 917597582.364.png 917597582.365.png 917597582.366.png 917597582.367.png 917597582.368.png 917597582.369.png 917597582.370.png 917597582.371.png 917597582.372.png 917597582.373.png 917597582.375.png 917597582.376.png 917597582.377.png 917597582.378.png 917597582.379.png 917597582.380.png 917597582.381.png 917597582.382.png 917597582.383.png 917597582.384.png 917597582.386.png 917597582.387.png 917597582.388.png 917597582.389.png 917597582.390.png 917597582.391.png 917597582.392.png 917597582.393.png 917597582.394.png 917597582.395.png 917597582.397.png 917597582.398.png 917597582.399.png 917597582.400.png 917597582.401.png 917597582.402.png 917597582.403.png 917597582.404.png 917597582.405.png 917597582.406.png 917597582.002.png 917597582.003.png 917597582.004.png 917597582.005.png 917597582.006.png 917597582.007.png 917597582.008.png 917597582.009.png 917597582.010.png 917597582.011.png 917597582.013.png 917597582.014.png 917597582.015.png 917597582.016.png 917597582.017.png 917597582.018.png 917597582.019.png 917597582.020.png 917597582.021.png 917597582.022.png 917597582.024.png 917597582.025.png 917597582.026.png 917597582.027.png 917597582.028.png 917597582.029.png 917597582.030.png 917597582.031.png 917597582.032.png 917597582.033.png 917597582.035.png 917597582.036.png
Amplifiers: Op Amps
Texas Instruments Incorporated
Figure 4. New second-order high-pass topology
C
1µF
1
C
1µF
R
15 k
2
2
Ω
R
10 k
6
OpAmp2
R
10 k
Ω
3
OpAmp3
Ω
R
10 k
5
Ω
R
10 k
4
Ω
OpAmp1
Input
R
10 k
1
Output
Ω
+
(a) Second-order servo feedback
R
10 k
6
Ω
Input
C
1µF
R
15 k
C
1µF
R
10 k
R
10 k
1
2
2
1
5
Ω
Ω
Ω
R
10 k
R
10 k
3
4
OpAmp2
OpAmp3
OpAmp1
Ω
Ω
Output
+
+
+
(b) Same circuit redrawn to be in-line
not allow us to create complex pole pairs. Therefore we
need a similar technique that will provide a complex second-
order function.
A new circuit topology implements a
complex pole pair
Figure 4 shows just such a circuit, drawn two different
ways. Figure 4a shows a gain block with the frequency-
dependent part of the circuit wrapped around it like the
first-order servo filter discussed earlier. Figure 4a is very
similar to the previous schematics except that there are
two integrators in the feedback path, one of which has an
added resistor included to set the Q of the second-order
function. Figure 4b shows the identical circuit just shifted
around to be in-line. Anyone familiar with three-op-amp
biquad circuits such as the Kerwin-Huelsman-Newcomb
(KHN) and Tow-Thomas (TT) filters will see a distinct
similarity. In fact, this topology is the same as the TT filter
except that, rather than having a resistor in parallel with
C 1 , it has R 2 in series with C 2 .
The end result of this subtle change from the TT filter is
that, whereas the TT filter implements an LPF and a band-
pass filter (BPF) but no HPF, this circuit can implement
an HPF and a BPF but no LPF. In our new circuit the HPF
20
Analog Applications Journal
High-Performance Analog Products
3Q 2008
917597582.037.png 917597582.038.png 917597582.039.png 917597582.040.png 917597582.041.png 917597582.042.png 917597582.043.png 917597582.045.png 917597582.046.png 917597582.047.png 917597582.048.png 917597582.049.png 917597582.050.png 917597582.051.png 917597582.052.png 917597582.053.png 917597582.054.png 917597582.056.png 917597582.057.png 917597582.058.png 917597582.059.png 917597582.060.png 917597582.061.png 917597582.062.png 917597582.063.png 917597582.064.png 917597582.065.png 917597582.067.png 917597582.068.png 917597582.069.png 917597582.070.png 917597582.071.png 917597582.072.png 917597582.073.png 917597582.074.png 917597582.075.png 917597582.076.png 917597582.078.png 917597582.079.png 917597582.080.png 917597582.081.png 917597582.082.png 917597582.083.png 917597582.084.png 917597582.085.png 917597582.086.png 917597582.087.png 917597582.089.png 917597582.090.png 917597582.091.png 917597582.092.png 917597582.093.png 917597582.094.png 917597582.095.png 917597582.096.png 917597582.097.png 917597582.098.png 917597582.100.png 917597582.101.png 917597582.102.png 917597582.103.png 917597582.104.png 917597582.105.png 917597582.106.png 917597582.107.png 917597582.108.png 917597582.109.png 917597582.111.png 917597582.112.png 917597582.113.png 917597582.114.png 917597582.115.png 917597582.116.png 917597582.117.png 917597582.118.png 917597582.119.png 917597582.120.png 917597582.122.png 917597582.123.png
 
Texas Instruments Incorporated
Amplifiers: Op Amps
output is the node labeled “Output” in both Figures 4 and 5.
Figure 5 identifies the BPF output as “BPF OUT .”
The transfer function, pole frequency, and Q for our
new HPF are respectively given by
1
R
R
RR C
C
4
5
36 1
2
and Q =
.
(5)
R
2
Using sensitivity analysis as covered in References 2, 5, 6,
and 8, we find that, as with the KHN and TT filters, all
sensitivities of f 0 or Q to the passive components are 1 or
lower. It is quite difficult to get lower sensitivities.
Of course, this filter could be used as a separate filter
block like any other HPF topology. In the first example
given earlier, we could add a three-op-amp circuit like this
to the front of the gain block/filter section and another fol-
lowing the filter. In this case, our new HPF topology would
have no real advantage over the KHN filter, and the only
SCCRR R
R
2
4
5
1236
V
V
R
R
OUT
IN
5
1
=−
,
(3)
SCCRR R
R
2
4
5
+
SC R
22 1
+
1236
1
f
=
,
(4)
R
R
0
4
5
2
π
CC R R
1236
Figure 5. Transfer functions for the new filter
C
1µF
1
C
1µF
R
15 k
2
2
Ω
BPF OUT
R
10 k
6
OpAmp2
Ω
R
10 k
3
OpAmp3
Ω
R
10 k
5
Ω
R
10 k
4
Ω
OpAmp1
Input
+
R
10 1
Output
Ω
+
0
–10
BPF OUT
–20
Output
–30
–40
–50
1
10
100
1 k
Frequency (Hz)
21
Analog Applications Journal
3Q 2008
High-Performance Analog Products
917597582.124.png 917597582.125.png 917597582.126.png 917597582.127.png 917597582.128.png 917597582.129.png 917597582.130.png 917597582.132.png 917597582.133.png 917597582.134.png 917597582.135.png 917597582.136.png 917597582.137.png 917597582.138.png 917597582.139.png 917597582.140.png 917597582.141.png 917597582.143.png 917597582.144.png 917597582.145.png 917597582.146.png 917597582.147.png 917597582.148.png 917597582.149.png 917597582.150.png 917597582.151.png 917597582.152.png 917597582.154.png 917597582.155.png 917597582.156.png 917597582.157.png 917597582.158.png 917597582.159.png 917597582.160.png 917597582.161.png 917597582.162.png 917597582.163.png 917597582.165.png 917597582.166.png 917597582.167.png 917597582.168.png 917597582.169.png 917597582.170.png 917597582.171.png 917597582.172.png 917597582.173.png 917597582.174.png 917597582.176.png 917597582.177.png 917597582.178.png 917597582.179.png 917597582.180.png 917597582.181.png 917597582.182.png 917597582.183.png 917597582.184.png 917597582.185.png 917597582.187.png 917597582.188.png 917597582.189.png 917597582.190.png 917597582.191.png 917597582.192.png 917597582.193.png 917597582.194.png 917597582.195.png 917597582.196.png 917597582.198.png 917597582.199.png 917597582.200.png 917597582.201.png 917597582.202.png 917597582.203.png 917597582.204.png 917597582.205.png 917597582.206.png 917597582.207.png 917597582.209.png 917597582.210.png 917597582.211.png 917597582.212.png 917597582.213.png 917597582.214.png 917597582.215.png 917597582.216.png 917597582.217.png 917597582.218.png 917597582.220.png 917597582.221.png 917597582.222.png 917597582.223.png 917597582.224.png 917597582.225.png 917597582.226.png 917597582.227.png 917597582.228.png 917597582.229.png 917597582.231.png 917597582.232.png 917597582.233.png 917597582.234.png 917597582.235.png 917597582.236.png 917597582.237.png 917597582.238.png 917597582.239.png 917597582.240.png 917597582.242.png 917597582.243.png 917597582.244.png 917597582.245.png 917597582.246.png 917597582.247.png 917597582.248.png 917597582.249.png 917597582.250.png 917597582.251.png
Amplifiers: Op Amps
Texas Instruments Incorporated
advantage it would have over any other common topology
is that it can implement an HPF with no capacitors in the
forward signal path.
The unique feature that this filter provides is that it is
easily applied around a gain block to add a high-pass func-
tion without putting any additional circuitry in the forward
signal path. Later we will see that there is a variation of
this circuit that works with an inverting amplifier while
feeding back to the non-inverting terminal, and that there
are other variations that work with non-inverting gain
blocks. All of these variations feed back to only one input.
Applying this technique to a non-inverting
amplifier
If the gain block to which we want to add a high-pass
function is non-inverting, we can use the variation of the
topology shown in Figure 6.
The transfer function for this circuit, Equation 6, is
identical to that of the circuit in Figure 5, except that the
gain term is (R 4 + R 5 )/R 4 rather than –R 5 /R 1 :
Figure 6. Applying the technique to a non-
inverting amplifier
C 1
C 2
R 2
OpAmp2
R 6
OpAmp3
R 3
R 4
R 5
OpAmp1
Output
Input
+
Figure 7. Inverting amplifier with feedback
to non-inverting terminal
SCCRR R
R
2
4
5
1236
V
V
RR
R
+
OUT
IN
4
5
=
(6)
SCCRR R
R
2
4
5
4
+
SC R
22 1
+
C
1µF
1236
2
C
1µF
1
Since the rest of Equation 6 is the same as Equation 3, the
pole frequency and Q for this HPF variation are also given
by Equations 4 and 5.
Maintaining gain-bandwidth product with an
inverting amplifier
In Figure 5 we demonstrated this filter technique for an
inverting amplifier. Note that both the input signal and the
feedback signal are applied to the inverting terminal via R 1
and R 4 , respectively. While the addition of R 4 to add the
HPF feedback has no effect on the nominal forward gain
for the gain block, it does increase the division ratio of the
feedback path of the gain block from
R
14 k
OpAmp3
3
Ω
R
14 k
6
OpAmp2
Ω
R
10 k
5
Ω
R
10 k
1
OpAmp1
Ω
Input
Output
+
R
RR
RR
RR R
||
1
14
14 5
to
,
(7)
+
||
+
1
5
necessary to keep the feedback negative. The resulting
transfer function, along with the pole frequency and Q, are
respectively given by
where R 1 || R 4 represents that R 1 is parallel to R 4 . This
change in local feedback around op amp 1 has the effect
of decreasing the effective gain-bandwidth product
(GBWP) of the op amp by the same amount. In our case,
R 1 = R 4 , which means the GBWP will be decreased by 33%.
For an inverting amplifier, rather than feeding back to the
inverting terminal as in Figure 5, we can feed back to the
non-inverting terminal, thus avoiding decreasing the effec-
tive GBWP of the op amp. Figure 7 shows this variation.
Notice that R 2 is missing in this configuration. Recall that
R 2 was needed to add a zero to the feedback path, which
allowed the Q to be set to a reasonable value; without R2,
the Q of the circuit would always be very high. In this
circuit we get a zero by reconfiguring the op amp 3 stage
from inverting to non-inverting. This reconfiguration was
R
RR
2
1
SCCRR
1236
V
V
R
R
+
OUT
IN
5
1
5
1
(8)
=−
,
R
RR SC R
2
1
SCCRR
+
23 1
+
1236
+
5
1
1
f
=
,
(9)
R
RR
0
1
2
π
CC R R
1236
+
5
1
R
RR
R
R
C
C
1
3
6
1
2
and Q =
.
(10)
+
1
5
22
Analog Applications Journal
High-Performance Analog Products
3Q 2008
917597582.253.png 917597582.254.png 917597582.255.png 917597582.256.png 917597582.257.png 917597582.258.png 917597582.259.png 917597582.260.png 917597582.261.png 917597582.263.png 917597582.264.png 917597582.265.png 917597582.266.png 917597582.267.png 917597582.268.png 917597582.269.png 917597582.270.png 917597582.271.png 917597582.272.png 917597582.274.png 917597582.275.png 917597582.276.png 917597582.277.png 917597582.278.png 917597582.279.png 917597582.280.png 917597582.281.png 917597582.282.png 917597582.283.png 917597582.285.png 917597582.286.png 917597582.287.png 917597582.288.png 917597582.289.png 917597582.290.png 917597582.291.png 917597582.292.png 917597582.293.png 917597582.294.png 917597582.296.png 917597582.297.png 917597582.298.png 917597582.299.png 917597582.300.png 917597582.301.png 917597582.302.png 917597582.303.png 917597582.304.png 917597582.305.png 917597582.307.png 917597582.308.png 917597582.309.png 917597582.310.png 917597582.311.png 917597582.312.png 917597582.313.png 917597582.314.png 917597582.315.png 917597582.316.png 917597582.318.png 917597582.319.png 917597582.320.png 917597582.321.png 917597582.322.png 917597582.323.png 917597582.324.png 917597582.325.png 917597582.326.png 917597582.327.png 917597582.329.png 917597582.330.png 917597582.331.png 917597582.332.png 917597582.333.png 917597582.334.png 917597582.335.png 917597582.336.png 917597582.337.png 917597582.338.png 917597582.340.png 917597582.341.png 917597582.342.png 917597582.343.png 917597582.344.png 917597582.345.png
Zgłoś jeśli naruszono regulamin