CO2 Enhanced Steam Gasification of Biomass Fuels-nawtec16-1949.pdf

(480 KB) Pobierz
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
Proceedings of NAWTEC16
16th Annual North American Waste-to-Energy Conference
May 19-21, 2008, Philadelphia, Pennsylvania, USA
NAWTEC16-1949
16th North American Waste to Energy Conference-May 2008
CO 2 Enhanced Steam Gasification of Biomass Fuels
HeidiC.ButtermanandMarcoJ.Castaldi*
DepartmentofEarthandEnvironmentalEngineering(HKSM)
ColumbiaUniversity,NewYork,N.Y.10027
Abstract
Thecurrentstudyinvolvesanexperimentalinvestigationofthedecompositionofvariousbiomass
feedstocksandtheirconversiontogaseousfuelssuchashydrogen.Thesteamgasificationprocessresultedinhigher
levelsofH 2 andCOforvariousCO 2 inputratios.WithincreasingratesofCO 2 introducedintothefeedstream,
enhancedcharconversionandincreasedCOlevelswereobserved.WhileCH 4 evolutionwaspresentthroughoutthe
gasificationprocessatconsistentlylowconcentrations,H 2 evolutionwasatsignificantlyhigherlevelsthoughitwas
detectedonlyatelevatedgasificationtemperatures:above500 o Cfortheherbaceousandnonwoodsamplesand
above650 o Cforthewoodbiomassfuelsstudied.
ThebiomassfeedstockswerestudiedthroughtheuseofThermoGravimetricAnalysis(TGA),Gas
Chromatography,Calorimetry,AtomicAbsorptionSpectrophotometry(AAS),andtheScanningElectron
MicroscopewithEnergyDispersiveXRayAnalysis(SEM/EDX).Thechemicalcompositionofthevarious
biomassfuelsandtheircombustionandgasificationashresidues,inadditiontothemassdecayandgaseous
evolutionbehaviorwereinvestigatedasafunctionoftemperature.
Thethermaltreatmentofbiomassfuelsinvolvespyrolysisandgasificationwithcombustionoccurringat
thehighertemperatures.Inthegasificationenvironment,whencombustionprocessesareoccurring,gaseous
componentsevolvefromthefuelandreactwithoxygeneitherreleasedfromthebiomassstructureitself,orfromthe
injectedsteamandCO 2 .Thesehightemperaturereactionsareresponsiblefortheenhancedburnoutofthecarbon
(charcoal)structurethatisproducedduringthelowtemperaturepyrolyticbreakdownofthebiomass.Sincethe
lignocellulosicbiomasscomponenttypicallyfoundinU.S.MSWisgreaterthan50%,techniquestoenhancethe
thermaltreatmentofbiomassfeedstockscanalsoaidintheprocessingofMSW.
GasevolutionasafunctionoftemperaturewasmonitoredforH 2 ,CH 4 ,CO 2 andCOforseveralbiomass
fuelsthatincludedwoods,grassesandotherlignocellulosicsamples.Theseincludedoak,sugarmaple,poplar,
spruce,whitepine,Douglasfir,alfalfa,cordgrass,beachgrass,maplebark,pineneedles,bluenoblefirneedles,
pecanshells,almondshells,walnutshells,wheatstraw,andgreenolivepit.TheTGAmassdecaycurvesshowed
similarbehaviorforthewoods,grassesandagriculturalresidues,wheremostofthemasslossoccurredbefore
500oC.Mostfeedstocksexhibited2constantmassstepsthoughseveralexhibitedathirdwithcompletedmassloss
by900 o 1000 o C.Twodistinctmassdecayregimeswerefoundtocorrelatewellwithtwodistinctgasevolution
regimesexhibitedinthecurvesforCO,H 2 andCH 4 .Mostofthemasslossoccurredduringpyrolysis,withthe
remainingdegradationtoashorcharoccurringinthehightemperaturegasificationregime.
Onecharacteristicofbiomasssamplesisthehighlyvariablenatureofthemineralcomposition.SEM/EDX
analysesindicatedhighlevelsofpotassium,magnesiumandphosphorusintheashresidue.Thedevitrificationand
embrittlementofthequartzfurnaceandbalancerodswereattributedtothehighmineralcontentofmanyofthe
biomassfeedstocks,withthehighalkalineoxidelevelsofthegrassesbeingparticularlydestructive.Whilemineral
contentmayexertabeneficialeffectthroughenhancedcharreactivitywiththepossibilityforamorethorough
processingofthefeedstock,thepotentialforcorrosionandslaggingwouldnecessitatethejudiciousselectionand
possiblepretreatmentofbiomassfuels.Amajoradvantageofthermaltreatmentthroughgasificationpriorto
combustionistheabilitytoremovemanyofthecorrosivevolatilesandashelementssuchaspotassium,sodiumand
chlorinetoavertdamagetotheprocessequipment.
1. Introduction
Risingenergydemands,heightened
awarenessofman'simpactontheglobalclimate
system,andtheinherentinstabilityofenergy
geopoliticshaveledtoagreaterawarenessofthe
importanceofdevelopingsourcesofenergythatcan
eitheraugmentthecapacityorreplacetheuseof
fossilfuels.Oneofthemorepromisingrenewable
energysourcesisbiomassfuels.Theycanaddress
bothenergysecurityand,beingacarbonneutral
energysource,environmentalsustainabilityand
corporateaccountability.Thoughcurrentlylessthan
3%oftheU.S.energyproductionisthroughtheuse
ofrenewableenergysources,aboutonethirdofthis
1
Copyright © 2008 by ASME
isattributabletowoods,grasses,forestrywastesand
agriculturalresidues.Biomassfeedstockcapacityhas
beencalculatedashavingthepotentialtosupply5%
ofthenation'spowerby2030,whilebiomassderived
fuelsofferevenmorepromiseinbeingabletomeet
20%ofthedomestictransportationdemand(1).
Currentenergystudiespredictadoublingofenergy
consumptionwithinthenext3040years.
Heightenedpublicawarenessoftheburningoffossil
fuelsandtheirconnectiontovisibleevidenceof
climatechangehasledtolegislationlimitingCO 2
emissionsthathavefarreachingimpactinthe
industrial,commercialandpublicsectors.
Asenergyproductivity,efficiencyand
supplybecomemorecriticaltoeconomicviability
andasglobalemissionsstandardsbecomemore
stringent,thecapabilitiesofexistingtechnologies
willneedtoevolvetomeetmoredemanding
engineeringconstraints.Sustainabilityandenergy
securitywilldriveengineeringdesignstoincorporate
moreefficientprocessesandequipment.These
designswillstrivetomeetazeroemissionenergy
conversionpolicyasweheadtowardsazerowaste
atomeconomy.Companiescurrentlyengagedin
energyintensiveindustriesarelookingatrenewable
resourcestechnologiesthatwillenablethemtobe
moreenergyefficientandeconomicallycompetitive.
Manyofthesecompanies,suchasthoseinthe
lumberindustry,havechosengasificationtechnology
forwoodresiduetoenergyandseetheoperational
shiftasalongtermstrategicinvestment.
Globally,economicfactorshavedriventhe
useofindigenousfuelstosatisfytheneedforpower
andenergyinemergingeconomies.Biomasshas
takenamoreprominentroleforuseastransportation
andindustrialfuelsinadditiontothetraditionaluse
forhouseholdcookingandlight.Inthesedeveloping
nations,useofbiomassascookingfuelin
combinationwithcookingstovetechnologytransfer
hasledtodecreasedparticulateemissionsandindoor
COlevels,acorrespondingdecreasedincidenceof
respiratoryinfectionandmoresustainablelocal
economies.Emergingeconomieshavebeen
consideringthealternativeuseofvariousbiomass
sourcesasfuelratherthanfood,andtheimportance
oflandpreservationinitiativesthatcouplebiomass
harvestingwithsustainableagroforestry.Policy
formulationthatincludeseducationofindividualsin
theseemergingeconomiesisessential.Theyneedto
bemadeawareofthebenefitsofalternativelyusing
biomassresiduesasfueltosupportsustainable
energyproductionratherthanexclusivelyfor
traditionalsoilnutrientreplenishment.
Pollutantsfromcombustionandtheir
atmospherictransportisaveryactiveresearchtopic
inthefieldofclimatologicalmodeling.Gasification,
ratherthancombustion,offerstheopportunityto
controlthelevelofthesegaseousandparticulate
emissionsleadingtolowerconcentrationsofsoot
particlesandaerosols.Thesootcreatedfromthe
combustionofdiesel,coalandwoodfuelsresultsin
bothpositivedarkparticlewarmingandnegative
shinyparticlecoolingoftheatmosphere.Particulate
transportandatmosphericchemistryaswellas
aerosolemissionsneedtobeconsideredwhen
developingregionalandglobalscaleclimatemodels.
Biomassburningaerosolswereobservedtobemore
easilyprecipitatedoverAfricathanothercontinents
suchasSouthAmerica.Thisfinding,coupledwith
thefactthatAfricaproducesmostoftheglobal
biomassburningemissions,isessentialindeveloping
localclimatemodels.Heightenedconcernforthe
consequencesofglobalwarmingandthe
consequencesofregionallyproducedbutglobally
dispersedpollutanttransporthasledtotechnology
transfertodevelopingnations.Thishasenabled
themtomoreefficientlycombustfuelsoriscurrently
helpingthemtofindalternativemeans,suchas
gasificationtechnology,toproduceadequatesupplies
ofenergy,powerandheatinaneconomicallyviable
andenvironmentallysustainableway,thatwould
ultimatelybegloballybeneficial.
Comparedtoatypicalfossilfuel,the
complexlignocellulosicstructureofbiomassismore
difficulttogasifyorcombust.Thenatureofthe
mineralimpuritiesinconjunctionwiththepresence
ofvariousinorganicspecies,aswellassulfurand
nitrogencontainingcompounds,adverselyimpacts
thebenignthermalprocessingoftheoxygenated
hydrocarbonstructureofthebiomass.While
combustionofbiomassfeedstocksresultsinfuel
boundnitrogenandsulfurbeingconvertedtoNO x
andSO x ,steamgasificationinvolvesthermal
treatmentunderareducingatmosphereresultingin
fuelboundnitrogenreleaseasN 2 andfuelbound
sulfurconversiontoH 2 Sthatismoreeasilyremoved
bymeansofadsorptionbeds.Unlikecombustion,the
gasificationprocessismoreenergyintensive.
Carefulengineeringoftheprocessisnecessaryifthe
resultistoproduceratherthanconsumeasignificant
amountofenergyorpowerasaresultofthethermal
treatment.
Introductionofsteamasareactantinfluent
durnggasificationhasbeenshowntoenhanceH 2
productionduringthegasificationofavarietyof
fuelsthatincludecoal,biomass,andmunicipalsolid
waste(2,3,4).IntroductionofCO 2 hasbeenshown
(5)toenhancetheCOproductionduringhigh
temperaturesteamgasificationwhiledepressingthe
H 2 andCH 4 .BoththesteamandCO 2 havebeen
showntoincreasethecharreactivity(6,7,8)through
amodificationofthecharporestructureandsurface
activity.Biomassgasificationusingsteamcanresult
inincreasedH 2 concentrationinthesynthesisgas
withhigherconcentrationscorrespondingtohigher
gasificationtemperaturesinthe7001100 o Crange.If
aCH 4 fuelstreamisthepreferredproductthen
carefulmonitoringoftheprocesstooperatebelow
600 o CwouldpermitoptimizingCH 4 production
whileminimizingtheH 2 stream.Ageneral
2
Copyright © 2008 by ASME
800 o Cwithasignificantlyhighervalueforthe
residueCH 4 molefraction.Theligninandcellulose
structuralcomponentsofbiomassfeedstockseach
havetheirowncollectionofcharacteristic
mechanismswhosereactionsarecoupledand
influencedbythemineralimpuritiesandthe
interactionoftheCO 2 withthethermal
decompositionproducts.Thethermodynamically
favoredproductsofsteamgasificationatthese
elevatedtemperaturesareCOandH 2 .Biomassfuels
highinlignincontentwereobservedtoproduce
highercharyieldsfollowingpyrolysisuptoabout
450 o C.Throughsubsequentthermaltreatmentat
elevatedtemperatures,enhancedproductionof
gaseousproductswaspossiblethroughinjectionof
H 2 OandCO 2 .Thisimprovedtarandchar
conversiontovolatilestranslatestoeconomicand
environmentaladvantagesthroughlesswasteresidue
fortreatmentandminimizationofhighlyalkalineash
residueresponsibleforcorrosivedamagetothe
processequipment.Largeashvolumedueto
oxidizedmineralsmoreprevalentinthegrassy
feedstocks,whensubjectedtothehighgasification
temperatures,canleadtomeltingandagglomeration
andthusslaggingasaresultofthermaltreatment.
Biomassfeedstocksofferthepromiseof
newsustainablesourcesforchemicals,energyand
power.Nevertheless,thegreatvariabilityin
chemicalcompositionresultsinawidevarietyofgas
evolutionprofiles,heatcontent,andpotentialfor
corrosivebehavior.ThroughtheuseofGas
Chromatography,ThermogravimetricAnalysisand
ScanningElectronMicroscopywithEnergy
DispersiveXRayAnalysis,alongwithchemical
informationthatcancharacterizethedistributionof
lignocellulosicstructuralcomponents,wehave
beguntointerpretthegasevolutionasafunctionof
composition,massdecayandtemperature.
Ultimatelyabetterunderstandingofthethermal
processingofthevariousbiomassfuelswillresultin
amoreinformedpredictionastotheenergy
productionpotentialforthevariousfeedstocks.The
currentstudyexaminedCO 2 injectionasatechnique
toenhancecharburnoutbycreatingmorereactive
charsthatresultinmorecompletethermaltreatment.
Thermalprocessingtechniquesthatcanmore
completelyconvertbiomassfuelsaretransferableto
MSWprocessingsincemorethanhalfofthemassof
municipalwasteisbiogenicinorigin.
2. Experimental Setup
2.1 Gasification System.Figure1showsa
schematicdiagramofthegasificationtestfacilityin
theCastaldiCombustionandCatalysisLabat
ColumbiaUniversity,HenryKrumbSchoolof
Mines.ItconsistsofanInstrumentSpecialists
TemperatureProgrammerInterface/Thermal
Analyzerthat,throughAcquisitionsoftware,can
characteristicofthefuelstreamproducedthrough
gasificationisacleanstreamwithaminimumoftar,
sootandparticulates.Biomassgasificationresultsin
aproducergaswhosemaincomponentsareCO,H 2
andCH 4 .OthervolatilecomponentsincludeCO 2 ,
acetaldehyde,aceticacid,phenol,formaldehyde,
formicacidandacetone.Sincethegasification
processwasperformedunderhighlevelsofN 2
dilution,manyofthesespecieswerenotdetectable
sincetheywerepresentinthepartspermillionrange.
Atgasificationtemperaturesinthe700
1200 o Crange,thedominantreactionsthatgovern
biomasssteamgasificationarethesteamreforming
reaction
C+H 2 O ã CO+H 2
H=+131.3kJ/mol,
(1)
andtheBoudouardreaction
C+CO 2 ã 2CO
H=+172.5kJ/mol,
(2)
inadditiontothepyrolyticcleavageand
condensationreactionsthatbreakdownthebiomass
latticestructure,thedecompositionreactionsofthe
oxygenatedmineralsreleasingO 2 ,theoxidationof
thechar
C+ ď O 2 (frombiomassstructure) ã CO
H=─110.5kJ/mol,
(3)
andthereversewatergasshiftreaction(RWGS)
H 2 +CO 2 ã CO+H 2 O
H=+41.2kJ/mol,
(4)
toreleaseCOandCO 2 asthechardegradesfroma
hydrocarbonskeletontoamineralashresidue.
ThoughH 2 evolutionappearedtocommencefor
manyrunsshortlyafter500 o C,apronounced
depressionintheH 2 concentrationwasnotclearly
discernableuntilafter700 o C.Ameasurable
enhancementofCOevolutionwithCO 2 recycleanda
pronouncedincreaseinCOconcentrationduetothe
Boudouardreactionwasobservedforallfeedstocks.
Thestrongestsignalappearedfollowingpyrolysisin
thegasificationregime.Atmuchhighergasification
temperaturesabove1050 o C,H 2 dissociation
competeswithH 2 formationtendingtodecreasethe
netyieldofmolecularH 2 .Manyoftherapiddrops
ingasevolutionconcentrationswereattributableto
theexhaustionofbiomassatthehightemperatures,
particularlyforthehigherCO 2 ratios.
CharacteristicallydifferentCH 4 behaviorwas
observedforthewoodsandgrassesascomparedto
theagriculturalresidues.Whiletheoptimum
methaneproductionforthewoodandherbaceous
feedstocksoccurredintheintervalbetween500
600 o C,thatfortheresiduesoccurredbetween600
3
Copyright © 2008 by ASME
regulatethetemperatureandheatingrateofthe
quartzfurnaceintheDupont951Thermogravimetric
Analyzer.ThecarrierflowconsistsofUHPN 2 and
BoneDryCO 2 whoseflowratesareregulatedby
meansoftwoGilmontGF1060rotameters.Akd
Scientific780100syringepumpfeedsdistilledwater
intoastainlesssteelsteamgeneratorthatproduces
slightlysuperheatedsteam(~110─120 o C)whose
temperatureismonitoredbyanOmegadigitalEtype
thermocouplereadoutpriortoenteringthefurnace.
Thetotalfeedflow(steam+N 2 +CO 2 )was
maintainedat90mL/min.Thevolumetric%CO 2 fed
intothelinevariedfrom050%whilethelevelof
waterintroducedwaskeptatroomtemperature
saturationvalues.Gaseoussteamwasintroduced
intothefurnacebymeansofasidearmthrough
whichflowedthesteamandthatportionoftheN 2
andCO 2 remainingafterafractionwasdivertedfor
purgeflowtopreventdepositionontotheTGA
electronics.Thegasificationprocesswasrunwith
excessH 2 OandCO 2 toensurethatthebiomasswas
thelimitingagentinthesteamgasificationreactions.
Thebiomasssamplesitsinaninertplatinum
pansuspendedoneitheraquartzorceramicrod.Gas
evolutiondataisrecordedasafunctionof
temperaturewiththemassdecayasafunctionof
temperaturedisplayedgraphicallyinrealtimeonthe
TPI/TGAAcquisitionsoftware.Textfilesare
exportedtoaspreadsheetforprocessing.The
incomingreactantsandbiomassproductsof
gasificationexitthefurnaceandenteranicewater
condensationcolumnthatremovesanymoisturefrom
thegasevolutionproductspriortoenteringthe
Agilent3000Amicrogaschromatograph.The
carriergasesforthe4channelmicroGCareUHPHe
andUHPAr.Thechromatographsensitivityand
resolutionisinthesingledigitppmVrange.TheGC
chromatogramsaregeneratedbyAgilentCerity
softwareandthedataisstoredinaspreadsheetfor
processing.
Figure 1.Schematicofexperimentalapparatus
2.2 Methodology of Gasification Testing.The
woodsampleswerepreparedbydrillingcoreswithin
planksofuntreatedwoodtoproducedrysawdust.
He
Ar
EvolvedGasesw/oH 2 O
GCData
Aquisition
GasChromatograph
CoolingWater
H 2 OTrap
Condensation
Column
Ar
He
CO 2
Rotameter
SyringePump
water
N 2
Rotameter
InletThermocouple
Steam
Generator
DigitalTemp .Readout
OutletThermocouple
Steam,N 2 ,CO 2
N 2 ,CO 2
Thermo GravimetricAnaly zer
(TGA)
Gases
exit
furnace
DataAcquisitionandAnalysis
T=f(t)
Variac
CO 2
N 2
TemperatureProgrammerInterface
ThermalAnalyzer
Theherbaceousfeedstockswereairdried,groundby
mortarandpestleandthenballmilled.Theamount
ofmechanicalprocessingwasdonesoastominimize
thechemicaldegradationofthefeedstock.Evidence
4
Copyright © 2008 by ASME
841544765.046.png 841544765.047.png 841544765.048.png 841544765.049.png 841544765.001.png 841544765.002.png 841544765.003.png 841544765.004.png 841544765.005.png 841544765.006.png 841544765.007.png 841544765.008.png 841544765.009.png 841544765.010.png 841544765.011.png 841544765.012.png 841544765.013.png 841544765.014.png 841544765.015.png 841544765.016.png 841544765.017.png 841544765.018.png 841544765.019.png 841544765.020.png 841544765.021.png 841544765.022.png 841544765.023.png 841544765.024.png 841544765.025.png 841544765.026.png 841544765.027.png 841544765.028.png 841544765.029.png 841544765.030.png 841544765.031.png 841544765.032.png 841544765.033.png 841544765.034.png 841544765.035.png 841544765.036.png 841544765.037.png 841544765.038.png 841544765.039.png 841544765.040.png 841544765.041.png 841544765.042.png 841544765.043.png 841544765.044.png 841544765.045.png
pyrolysisbetweenabout275400 o Cduringwhich
timethebiomassstructuralcomponents
depolymerizationandcondensationreactions.With
increasingtemperatureduringlowtemperature
gasificationfrom400600 o C,thelignocellulosic
structureevolvesintoacarbonlatticestructureasthe
pyrolyticcharundergoesdecompositionand
carbonization.Finally,hightemperaturecombustion
reactionsbetween700850 o Ccontinuethechar
burnoutwiththeaidofoxygenbroughtinbythe
steamandoxygenreleasefromthebiomassstructure
itself.By1000 o Callofthebiomasssamplesappear
tohavecompletedtheirmassburnouttoresidual
charandash.SamplesexposedtoCO 2 enhanced
steamgasificationhadlowerresidualcharfractions.
Twodistinctmassdecayregimesthatcorrelatewith
thetwodistinctlydifferentgasevolutionregimescan
beidentifiedinthedecompositioncurvewherethe
transitiontemperatureappearstobeinthevicinityof
400 o C.Themassdecaycurvesareforaslow
gasificationrateof10 o C/minandwouldbe
significantlydifferentasdiscussedbyBrunneretal.
(9)athigherheatingrates.
Thethermaldecompositionofthephenolic
andhighlycrosslinkedligninstructurefollowsavery
differentsetofreactionpathwaysthanthatofthe
polysaccharidecelluloseandhemicellulose
structures.Lignindecompositionbeginsmuchearlier
atabout225 o Candtakesmuchlongeruntilabout
625 o Ctocompletewhereascellulosedecomposition
beginslateratabout325 o Candoccursrapidlysothat
by425 o Cdecompositionisnearlycomplete.The
behaviorofthestructuralcomponentsismanifested
intheresultantdecompositionbehaviorofthe
biomassfeedstock.Thevariousfeedstocksshowed
decompositionratesthatwereintermediatebetween
thatofligninandcellulosethoughwecanexpectthat
residuesorgrasseshighinalkalinecontentmayalso
exhibitacatalyticeffectnotpresentinthe
decompositionofthepurestructuralcomponents.To
understandtheinfluenceoflignincontentonthe
volumeofcharproducedduringpyrolysis,the
thermaltreatmentwashaltedat400 o Cfollowing
pyrolysisbutpriortogasification.Grassesandbarks
thatwerelowerinlignincontentproducedcharsthat
werebetween20and30%lessbyweight.The
distinctionbetweencharvolumesproducedwere
greatestwhencomparingsamplesthatinvolvedno
CO 2 injection.
ofthisdegradationcouldbeseeninthedistinctly
differentgasevolutionprofilesexhibitedbythegreen
pineneedlesascomparedtothedriedpineneedles.
Noneofthegrassesorneedleswerewaterwashed
butusedasreceivedtomaintaintheoriginalmineral
contentofthesample.Onlythebeachgrasssample
neededcarefulinspectionandpretreatmentsothatit
couldbecleanedofallsandgrains.Alloftheresidue
samples,shellsandpits,werepulverizedwitha
coarsedrillbitwhilethericehullsweregroundwith
mortarandpestle.
Thefeedstocksincludedspruce,whitepine,
Douglasfir,poplar,sugarmaple,oak,alfalfa,
cordgrass,Americanbeachgrass,pineneedles,maple
bark,bluenoblefirneedles,wheatstraw,greenolive
pit,pecanshell,almondshell,walnutshell,peanut
shell,ricehullandcottonplant.Thetypicalsizeof
thesamplesrangedfrom2025mg.Theagricultural
residuesgasevolutionrunsusedsamplesthatwere
2730mg.TheDouglasfirsamplewas16mg,
poplarwas25mg,beachgrasswas34mgandthe
largepanbeachgrasssamplewas110mg.The
sampleshavetheirweightbothmeasuredinrealtime
bytheTPI/TAsoftwareand,forverification,each
sampleisweighedonaMettlerscaleaccurateto+/
0.1mg.
ThetotalincomingflowofCO 2 +N 2 +H 2 Ois
maintainedat90mL/min,withthesyringepump
regulatingthedistilledwaterflowrate,and
rotametersregulatingthebonedryCO 2 andUHPN 2
ratessoastomaintainthedesiredCO 2 concentration.
TherelativelysmallsampleintheTGApanandthe
relativelyhighflowrateofthefeedresultin
significantdilutionofthegasevolutionproducts
detectedbythemicoGC.Tomoreclearlyidentify
H 2 ,Arisusedasthecarriergasonthemolecular
sievecolumnusedtodetectH 2 ,CH 4 andCO.The
otherthreeGCcolumnsuseUHPHeasthecarrier
gas.CO 2 concentrationlevelsaredetectedusinga
porouslayeropentubularPLOTUcolumn.GC
samplingoccurredapproximatelyevery4minutes
andtheTPI/TAwassettocontrolthetemperature
rampofthefurnaceat10 o C/min.
3. Results and Discussion
3.1 Physical Observations. Themass
decompositioncurveforrepresentativewoods,
grassesandagriculturalresiduesappearsinFigure
2.Thelargestpercentmasslossoccursduring
5
Copyright © 2008 by ASME
Zgłoś jeśli naruszono regulamin