Chueshov. Introduction to infinite-dimensional dynamical and dissipative systems(419s).pdf

(2589 KB) Pobierz
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
Author: I. D. Chueshov
I. D. Chueshov
This book provides an exhau -
stive introduction to the scope
of main ideas and methods of the
theory of infinite-dimensional dis -
sipative dynamical systems which
has been rapidly developing in re -
cent years. In the examples
sys tems generated by nonlinear
partial differential equations
arising in the different problems
of modern mechanics of continua
are considered. The main goal
of the book is to help the reader
to master the basic strategies used
in the study of infinite-dimensional
dissipative systems and to qualify
him/her for an independent scien -
tific research in the given branch.
Experts in nonlinear dynamics will
find many fundamental facts in the
convenient and practical form
in this book.
The core of the book is com -
posed of the courses given by the
author at the Department
of Me chanics and Mathematics
at Kharkov University during
a number of years. This book con -
tains a large number of exercises
which make the main text more
complete. It is sufficient to know
the fundamentals of functional
analysis and ordinary differential
equations to read the book.
Title:
Introduction to the Theory
of InfiniteDimensional
Dissipative Systems
ISBN: 966–7021–64–5
Dissipative Systems
I. D. Chueshov
Chueshov
I ntroduction
ntroduction
Theory
to the
of Infinite-Dimensional
Infinite-Dimensional
D issipative
issipative
S ystems
ystems
Universitylecturesincontemporarymathematics
Translated by
Constantin I. Chueshov
from the Russian edition ( « A CTA » , 1999)
You can ORDER
ORDER this book
while visiting the website
of «A CTA » Scientific Publishing House
http://www.acta.com.ua
Translation edited by
Maryna B. Khorolska
www.acta.com.ua/en/
841902915.005.png 841902915.006.png 841902915.007.png 841902915.008.png
I. D. Chueshov
Introduction
to the Theory of Infinite-Dimensional
Introduction
to the Theory of Infinite-Dimensional
to the Theory of Infinite-Dimensional
Dissipative Systems
Dissipative Systems
A CTA 2002
841902915.001.png 841902915.002.png
UDC 517
2000 Mathematics Subject Classification:
primary 37L05; secondary 37L30, 37L25.
This book provides an exhaustive introduction to the scope
of main ideas and methods of the theory of infinite-dimen-
sional dissipative dynamical systems which has been rapidly
developing in recent years. In the examples systems genera-
ted by nonlinear partial differential equations arising in the
different problems of modern mechanics of continua are con-
sidered. The main goal of the book is to help the reader to
master the basic strategies used in the study of infinite-di-
mensional dissipative systems and to qualify him/her for an
independent scientific research in the given branch. Experts
in nonlinear dynamics will find many fundamental facts in the
convenient and practical form in this book.
The core of the book is composed of the courses given by
the author at the Department of Mechanics and Mathematics
at Kharkov University during a number of years. This book
contains a large number of exercises which make the main
text more complete. It is sufficient to know the fundamentals
of functional analysis and ordinary differential equations to
read the book.
Translated by Constantin I. Chueshov
from the Russian edition ( « A CTA » , 1999)
Translation edited by Maryna B. Khorolska
A CTA Scientific Publishing House
Kharkiv, Ukraine
E-mail: we@acta.com.ua
Свідоцтво ДК №179
© I. D. Chueshov, 1999, 2002
© Series, « A CTA » , 1999
© Typography, layout, « A CTA » , 2002
ISBN 966-7021-20-3 (series)
ISBN 966-7021-64-5
841902915.003.png
 
Contents
. . . . Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Chapter 1 .
e Theory
of Infinite-Dimensional Dynamical Sy
Basic Concepts of
Basic Concepts of th
tth
the Theory
e Theory
of Infinite-Dimensional Dynamical Sy
of Infinite-Dimensional Dynamical Syst
sst
stems
ems
. . . . § 1 Notion of Dynamical System . . . . . . . . . . . . . . . . . . . . . . . . . . 11
. . . . § 2 Trajectories and Invariant Sets . . . . . . . . . . . . . . . . . . . . . . . . 17
. . . . § 3 Definition of Attractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
. . . . § 4 Dissipativity and Asymptotic Compactness . . . . . . . . . . . . . . 24
. . . . § 5 Theorems on Existence of Global Attractor . . . . . . . . . . . . . . 28
. . . . § 6 On the Structure of Global Attractor . . . . . . . . . . . . . . . . . . . 34
. . . . § 7 Stability Properties of Attractor and Reduction Principle . . 45
. . . . § 8 Finite Dimensionality of Invariant Sets . . . . . . . . . . . . . . . . . 52
. . . . § 9 Existence and Properties of Attractors of a Class
of Infinite-Dimensional Dissipative Systems . . . . . . . . . . . . . 61
. . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Chapter 2 .
Long-Time Behaviour of Solutions
to a Class of Semilinear Parabolic Equations
Long-Time Behaviour of Solutions
to a Class of Semilinear Parabolic Equations
. . . . § 1 Positive Operators with Discrete Spectrum . . . . . . . . . . . . . . 77
. . . . § 2 Semilinear Parabolic Equations in Hilbert Space . . . . . . . . . . 85
. . . . § 3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
. . . . § 4 Existence Conditions and Properties of Global Attractor . . 101
. . . . § 5 Systems with Lyapunov Function . . . . . . . . . . . . . . . . . . . . . 108
. . . . § 6 Explicitly Solvable Model of Nonlinear Diffusion . . . . . . . . . 118
. . . . § 7 Simplified Model of Appearance of Turbulence in Fluid . . . 130
. . . . § 8 On Retarded Semilinear Parabolic Equations . . . . . . . . . . . 138
. . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
841902915.004.png
 
4
Contents
Chapter 3 .
Inertial Manifolds
. . . . § 1 Basic Equation and Concept of Inertial Manifold . . . . . . . . 149
. . . . § 2 Integral Equation for Determination of Inertial Manifold . . 155
. . . . § 3 Existence and Properties of Inertial Manifolds . . . . . . . . . . 161
. . . . § 4 Continuous Dependence of Inertial Manifold
on Problem Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
. . . . § 5 Examples and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
. . . . § 6 Approximate Inertial Manifolds
for Semilinear Parabolic Equations . . . . . . . . . . . . . . . . . . . 182
. . . . § 7 Inertial Manifold for Second Order in Time Equations . . . . 189
. . . . § 8 Approximate Inertial Manifolds for Second Order
in Time Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
. . . . § 9 Idea of Nonlinear Galerkin Method . . . . . . . . . . . . . . . . . . . 209
. . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Chapter 4 .
The Problem on Nonlinear
Oscillations of a Plate in a Supersonic Gas Flow
The Problem on Nonlinear
Oscillations of a Plate in a Supersonic Gas Flow
. . . . § 1 Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
. . . . § 2 Auxiliary Linear Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
. . . . § 3 Theorem on the Existence and Uniqueness of Solutions . . 232
. . . . § 4 Smoothness of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
. . . . § 5 Dissipativity and Asymptotic Compactness . . . . . . . . . . . . . 246
. . . . § 6 Global Attractor and Inertial Sets . . . . . . . . . . . . . . . . . . . . 254
. . . . § 7 Conditions of Regularity of Attractor . . . . . . . . . . . . . . . . . . 261
. . . . § 8 On Singular Limit in the Problem
of Oscillations of a Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
. . . . § 9 On Inertial and Approximate Inertial Manifolds . . . . . . . . . 276
. . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Zgłoś jeśli naruszono regulamin